
PROPOSAL
FOR NEXT
GENERATION
ESGF SEARCH
SERVICES

LUCA CINQUINI
NASA JET PROPULSION LABORATORY AND
CALIFORNIA INSTITUTE OF TECHNOLOGY

JPL UNLIMITED RELEASE SYSTEM CLEARANCE NUMBER: #
© 2018 CALIFORNIA INSTITUTE OF TECHNOLOGY. GOVERNMENT SPONSORSHIP ACKNOWLEDGED

Current ESGF Search Architecture
Enables local administration of metadata catalogs, yet federation wide searches

Based on Apache Solr, leverages functionality for distributed searches and
replication

Each node replicates the catalogs of all the other nodes to resolve searches locally

A client can query any of the nodes in the federation and obtain the same results

Current Shortcomings
Each node administrator must manually configure a replica shard for all other nodes in the
federation

High potential for inconsistencies across nodes (for example, if one replica breaks at one
node)

All nodes must scale concurrently when the federation grows (number of index nodes or
metadata holdings at each node)

The current Solr installation is becoming obsolete and insecure, yet it is difficult to upgrade:

All sites must upgrade simultaneously for replication to keep working in both directions

Data must be re-indexed to upgrade the underlying Lucene version

Proposal for Next Generation ESGF Search Architecture

Let each institution maintain only one index node where they publish their
data (i.e. no replica shards)

Establish a few “super-indexes” that aggregate metadata from all institutions

Point all client applications to the super-indexes

Technical Implementation

Adopt Solr Cloud

Deploy as Docker and Kubernetes

On the cloud, or in-premise

Harvest and sync

Solr Cloud
Solr Cloud is a more advanced and scalable Solr architecture, designed to be
deployed on a multiple hosts

The full metadata index is partitioned into logical shards

Each shard is physically instantiated as one or more replicas

Replicas are automatically deployed onto Solr instances separate hosts (if
possible) for resiliency

Host CHost BHost A

Solr server

shard 1

shard 1

shard 2

shard 2

shard 3

shard 3

shard 4

shard 4

shard 5

shard 5

shard 6

shard 6

shard 7

shard 7

shard 8

shard 8

shard 9

shard 9

Solr server Solr server

Solr client
Publish / Query

Full Index

Full Index

Zookeeper
leader Zookeeper Zookeeper

Solr Cloud
Metadata can be published to any Solr instance and it will directed to the
proper shard leader, then replicated (distributed indexing)

Clients can query any Solr instance, and the query will be load balanced
and resolved versus a complete set of shard replicas (distributed querying)

A set of Zookeeper servers provides centralized configuration management

Host CHost BHost A

Solr server

shard 1

shard 1

shard 2

shard 2

shard 3

shard 3

shard 4

shard 4

shard 5

shard 5

shard 6

shard 6

shard 7

shard 7

shard 8

shard 8

shard 9

shard 9

Solr server Solr server

Solr client
Publish / Query

Full Index

Full Index

Zookeeper
leader Zookeeper Zookeeper

Prototype Deployment on AWS
Small cluster of 3 EC2 instances of type t2.medium (2 CPUs, 4GB memory)

Solr configuration: 3 shards per collection, 3 replicas per shard

Tracking ESGF global archive for over 2 months

Docker and Kubernetes
All software components were deployed
as Docker containers onto an AWS
Kubernetes cluster

Zookeeper = K8s Deployment

Solr instances = K8s Stateful Sets

Harvest/Sync clients = K8s Cron Jobs

Kubernetes StatefulSet

Kubernetes JobKubernetes JobKubernetes Job

Kubernetes Deployment

solr-node-0 Pod

8983

solr-home

solr-node-1 Pod

8983

solr-home

solr-node-2 Pod

8983

solr-home

solr-headless Service
ClusterIP=None

8983

Provides stable internal IPs
for the pods in the

StatefulSet

StatefulSet provides stable identity,
networking, and persistent data to the pods.
Pods can be stopped, restarted, re-allocated

across nodes without loosing their state

zookeeper Pod
2181 2888 3888

Zookeeper manages the cluster of distributed
Solrs - shard and replica location, leaders,

schema, etc.
Also provides SolrCloud native load
balancing across all shard replicas

Persistent volumes

zk-data zk-datalog

solr-load-balancer Service
type=ClusterIP

8983

Provides load balancing
across all matching Solr

pods for requests by clients
inside the cluster

Kubernetes Job starts a Pod that runs to
completion.

Uploads SolrCloud configuration to
Zookeeper and initializes Solr Collections,

Shards

Periodically syncs
with remote Solr

slave

[Minikube]
solr-ingress

[AWS, GKE]
Solr-proxy Service
type=LoadBalancer

80
80

Expose load-
balances Solr

endpoint to the
internet

Load
Balancing

zookeeper Service
type=ClusterIP

2181 2888 3888

solr-config Pod solr-harvesting Pod solr-config Pod

Migrates metadata
from remote Solr

slave

Harvesting and Syncing
Harvesting clients are run initially to read all records from each
existing master node into the super-index

May take up to several days for large indexes

Syncing client is run every hour to sync the remote index to the
super-index

Algorithm uses timestamp stats to compare the indexes by
time interval - year/month/day/hour

Advantages
Automatic distributed indexing, querying and load balancing

Resiliency and automatic failover

Horizontal and vertical scalability

Add more servers and/or increase the memory of each
server

The system can be scaled by increasing the resources at
one location, not at all sites through the federation

Upgrades can be executed by bootstrapping a new system
in the background, and switching over the proxy when
ready

Benchmarking: Datasets
Using “super-index” deployed on small AWS K8s cluster

3 EC2 instances of type “t2.medium” -2 CPUs, 4GiB memory

0

200

400

600

800

1000

1200

1400

0 1 2 3 4 5 6 7

Q
ue

ry
 T

im
e

(m
s)

Query for Datasets

Solr Benchmarking

AWS
LLNL
IPSL

CEDA
DKRZ
JPL

CGP

~1M Datasets

Benchmarking: Files

0

200

400

600

800

1000

1200

1400

0 1 2 3 4 5 6 7

Q
ue

ry
 T

im
e

(m
s)

Query for Datasets

Solr Benchmarking

AWS
LLNL
IPSL

CEDA
DKRZ
JPL

CGP

~18M Files

Conclusions

Proof of concept successfully executed

Software stack is ready for operational deployment as
beta service

Need to find resources - on the cloud or in-premise

A timely deployment is recommended to enable
smoother upgrades during CMIP6 operations

